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Classical motion of an electron in an electric-dipole field. 
I. Finite dipole casey 

J. E. TURNERS and K. FOX§ll 
$ Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 
U.S.A. 
5 Physics Department, The  University of Tennessee, Knoxville, and Oak Ridge 
National Laboratory, Oak Ridge, Tennessee, U.S.A. 
MS. received 11 th September 1967 

Abstract. The  classical motion of an electron in the field of a finite electric-dipole 
is analysed in terms of Hamilton-Jacobi theory. I t  is shown that a bound state exists 
for an arbitrarily small dipole moment. 

1. Introduction 
Because of recent interest in the quantum-mechanical bound states of an electron 

moving in the field of a finite electric dipole (Wallis et al. 1960, Fox and Turner 1966 a, b, 
Mittleman and Myerscough 1966, Turner and Fox 1966, L6vy-Leblond 1967, Brown and 
Roberts 1967, Crawford and Dalgarno 1967, Coulson and Walmsley 1967, Crawford 
1967, Fox 1967), we wish to present our analysis of the classical problem (Turner and Fox 
1965). This analysis gives insight into both quantum and classical aspects of the problem. 
I t  shows specifically how, in contrast with the quantum-mechanical result that a minimum 
dipole moment (1.625 x e.s.u. cm) is required to bind an electron, binding occurs 
classically for an arbitrarily small dipole moment. 

2. Hamilton-Jacobi equation 
In  figure 1 we represent an electron of charge - -e in the vicinity of a dipole, centred at 

the origin 0 of coordinates, with stationary charges + q  and -4, comprising the dipole, 
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Figure 1. Cylindrical coordinate reference Figure 2 .  Elliptic-hyperbolic coordinate 
system. The  dipole moment is D = 2pa = qR, reference system. The  dipole moment is 

D = 2qa = qR. 
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located at the positions x = + a  and x = -a.  The  magnitude of the dipole moment is 
D = 2qa = qR. The  cylindrical coordinates ( p ,  4, x) of the electron are given in terms of 
its Cartesian coordinates (x, y, x) by the relations x = p cos 4, y = p sin 4, and x = x. 
As shown explicitly below, the angular momentum of the electron about the x axis is 
constant, and so only two action variables are non-trivial. 

In  figure 2 we define elliptic-hyperbolic coordinates ( E ,  7 )  : 

where r1 and r2 are the distances of the electron from the charges + q  and -9. I n  three 
dimensions, surfaces of constant and 7 are independent of the azimuthal angle + and thus 
define ellipsoids and hyperboloids of revolution about the z axis. 

The  potential energy of the electron is 

y 2  = 3R(4-7) 
and so the potential energy is 

In  cylindrical coordinates the kinetic energy of the electron is 

T = Jm(p2 + p2@ + k2) (5) 
where m is the mass of the electron and the dots denote differentiation with respect to time. 
From the geometry in figure 2 and from equation (3) we may write the equations relating 

r I 2  = p2 + (x - a)2  = a2((+ 7)2  

rZ2 = p2 + (x + a)2 = a2(( - v ) ~ .  
Solving for p and x in terms of E and 7 and performing the time differentiations, we obtain 
from equation ( 5 )  

( P ,  4 and ( E ,  7) : 

( 6 )  

I I CZ 2-2 \ \ 

(7) 

The  momenta conjugate to the coordinates ( E ,  7,  4) are defined by the following 
partial derivatives : 

C 

Writing the kinetic energy in terms of these conjugate momenta gives for the Hamiltonian, 
H = T+V, 

(9) 
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This expression is consistent with that given for the hydrogen ion molecule H, + , for which 
both electric charges on the 2: axis in figure 1 are positive (Born 1960). Hamilton's canonical 
equation p ,  = - aHjaq5 implies at once from equation (9) that p, is a constant of the 
motion since q5 does not appear explicitly in the Hamiltonian. We are left, therefore, with 
determining the properties of the motion in terms of f and 7 .  

T h e  Hamilton-Jacobi equation is obtained from equation (9) by writing E in place of 
H for the total energy and a W/af and aJ4'ji.l in place of the momentap{ and p, (Goldstein 
1950). The  quantity W, which is Hamilton's characteristic function, generates a canonical 
transformation from ( E ,  7 )  and their conjugate momenta ( p e ,  p,) to new variables for which 
all the momenta are constants of the motion. We treat Was  a function of f ,  7 and the new 
conjugate momenta. The  Hamilton-Jacobi equation is thus 

We assume that W is a sum of two functions, W = Wt( f )+ Wn(q), where W, and W7 
depend only upon the single coordinate shown (and the new momenta). The  first term in 
curly brackets in equation (10) then depends only on the coordinate E and the second 
term only on 7 .  Equation (10) can then be valid for all values of the independent variables 
( f ,  7 )  only if the two bracketed terms are constant. Denoting the values of these constants 
by & K ,  we obtain 

It follows that 
aW ma2E)ll2 p ,  = -_ = ( - 2  ( - ( 4  + Cf2 - a t  ( 2 -  1 

where the quantities A,  B,  and C are given by 

A =  K P,, 
E 2ma2E 

and satisfy the identity 
Pm2 A + 1 - C =  -- 

2ma2E' 

3. Analysis of the motion 
T h e  motion of the electron takes place in ranges of values of f and 7 for which the 

momenta in equation (12) are real. For bound states of the electron in the field of the dipole, 
E c 0 and hence the polynomials in equation (12) cannot be negative. That is 

F ( f )  - f 4 + C f 2 - A  > 0 
G(7) - 7 4 + B 7 3 + C 7 2 - B 7 - A  > 0. (15) 
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The  classical motion takes place between the roots of F(( )  and G(v) in regions where the 
functions are positive. 

We first analyse F ( 0 .  The roots of this function are 

We see that, for real t1 and c2, we must require that C > 0 and C2 2 4A.  From 
equation (13) the condition C2 2 4 A  can be expressed as 

1 K 2  
Q -  1+- . P*2 

-2ma2E 4( E )  

Since k 1 by our definition of coordinates (equation (l)), we require that F ( f )  have 
roots not smaller than unity. This requires that 

or that 

Since C 1 - K/E, equation (19) implies that - K/E 2 1 ;  in addition, equation (13) 
implies that A 2 1. If we carry equation (19) further, we find that A+ 1 - C  2 0, as 
already implied for E < 0 by equation (14). 

The extrema of F ( f )  are obtained by solving 

dF 
(20) _ -  - -4t3+2CE = 0 

d t  

which has the roots t = 0, f (frC)1’2. The  minimum value of F ( [ )  occurs at 5 = 0 since 
d2F/dt2 = 2C > 0 at this point; F(0) = - A  < - 1. The maximum value of F ( f )  is 
F{ (&‘)1/2} = ($C2) - A  2 0. 

F J [ )  
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Figure 3. Analysis of F(8). The classical motion of an electron in the field of a dipole 
takes place in the shaded interval. 

The  form of F(5) is illustrated in figure 3 for a case of physically allowed motion. 
The  function is symmetric and F ( ( )  --f - CO as E -+ k CO. The classical motion takes 
place in the range El 6 5 < t2, in which F ( ( )  2 0, as indicated by the shaded region 
in this figure. 

For small binding energies the roots 8, and t2 have a simple form. Writing 
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we obtain, for small E ,  

T o  this order, the roots are 
1/2 E,  = (I+-) P d 2  

2ma2K 

As E --f 0, f 2  -+ CO and so the electron orbit extends to great distances. 
The  function G(q) in equation (15) is the sum of an even and an odd function: 

with 

The function GE, which is shown as one of the broken curves in figure 4, is identical with 
the function F,  above, and hence has roots at q = ? El and 7 = i E2. The function Go(q) 

Figure 4. Analysis of G(r). The  classical motion of an electron in the field of a dipole 
takes place in the shaded interval. 

n=- I  

H y p e r b  

q =  0 

Figure 5 .  Three-dimensional region of classically allowed orbits contained in the 
valume generated by revolution of the cross-hatched area about the dipole axis. 
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has roots at 7 = 0, rt 1. The  slope of Go(7) at the origin is -B, which by equation (13) is 
negative for E < 0. The  extrema of Go(7) occur at 7 = k 1/43; Go( - 1/43) = +2B/343 
is a maximum, and Go( + l/d3) = -2B/343 is a minimum. As 7 -+ -i- CO, Go +- k CO. 
The  shape of the function Go(7) is shown by the other broken curve in figure 4. T h e  sum 
G(r), shown by the full curve, can always be made positive in some interval of the region 
- 1 < 7 < 0 by making B large enough. (The roots of G(q) in this region are ql and q2.) 
We see from equation (13) that, for a fixed value of dipole moment, B can be made arbitrarily 
large if the binding energy - E  is taken arbitrarily small. 

T h e  allowed classical bound-state orbits lie in a volume defined in three dimensions by 
rotating the cross-hatched area in figure 5 about the dipole axis. Every orbit is contained 
in the upper half-space with 1 < El < E < E2 < CO and -1 < v2 < 7 < ql < 0; the 
electron cannot enter the lower half-space (q > 0). 

4. Conclusion 
We have shown that a bound state exists for any non-zero value of dipole moment D 

since, in classical mechanics, the binding energy of the electron is a constant of the motion 
which can be made as close to zero as desired by a suitable choice of initial conditions. 
Quantum mechanically, however, it is known that binding of an electron occurs only when 
D > 1.625 x e.s.u. cm. 
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